Self-induced polar order of active Brownian particles in a harmonic trap.
نویسندگان
چکیده
Hydrodynamically interacting active particles in an external harmonic potential form a self-assembled fluid pump at large enough Péclet numbers. Here, we give a quantitative criterion for the formation of the pump and show that particle orientations align in the self-induced flow field in surprising analogy to ferromagnetic order where the active Péclet number plays the role of inverse temperature. The particle orientations follow a Boltzmann distribution Φ(p) ∼ exp(Ap(z)) where the ordering mean field A scales with the active Péclet number and polar order parameter. The mean flow field in which the particles' swimming directions align corresponds to a regularized Stokeslet with strength proportional to swimming speed. Analytic mean-field results are compared with results from Brownian dynamics simulations with hydrodynamic interactions included and are found to capture the self-induced alignment very well.
منابع مشابه
Active colloidal suspensions exhibit polar order under gravity.
Recently, the steady sedimentation profile of a dilute suspension of chemically powered colloids was studied experimentally [J. Palacci et al., Phys. Rev. Lett. 105, 088304 (2010)]. It was found that the sedimentation length increases quadratically with the swimming speed of the active Brownian particles. Here we investigate theoretically the sedimentation of self-propelled particles undergoing...
متن کاملCooperative Motion of Active Brownian Spheres in Three-Dimensional Dense Suspensions
The structural and dynamical properties of suspensions of self-propelled Brownian particles of spherical shape are investigated in three spatial dimensions. Our simulations reveal a phase separation into a dilute and a dense phase, above a certain density and strength of selfpropulsion. The packing fraction of the dense phase approaches random close packing at high activity, yet the system rema...
متن کاملFlagellar dynamics of a connected chain of active, polar, Brownian particles.
We show that active, self-propelled particles that are connected together to form a single chain that is anchored at one end can produce the graceful beating motions of flagella. Changing the boundary condition from a clamp to a pivot at the anchor leads to steadily rotating tight coils. Strong noise in the system disrupts the regularity of the oscillations. We use a combination of detailed num...
متن کاملComputer simulation on the collision-sticking dynamics of two colloidal particles in an optical trap.
Collisions of a particle pair induced by optical tweezers have been employed to study colloidal stability. In order to deepen insights regarding the collision-sticking dynamics of a particle pair in the optical trap that were observed in experimental approaches at the particle level, the authors carry out a Brownian dynamics simulation. In the simulation, various contributing factors, including...
متن کاملActivity-induced phase separation and self-assembly in mixtures of active and passive particles.
We investigate the phase behavior and kinetics of a monodisperse mixture of active (i.e., self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the active component triggers phase separation into a dense and a dilute phase; in the dense phase, we further find active-passive segregation, with "rafts" o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 112 23 شماره
صفحات -
تاریخ انتشار 2014